I’m looking for the fastest way to determine if a `long`

value is a perfect square (i.e. its square root is another integer):

- I’ve done it the easy way, by using the built-in
`Math.sqrt()`

function, but I’m wondering if there is a way to do it faster by restricting yourself to integer-only domain. - Maintaining a lookup table is impractical (since there are about 231.5 integers whose square is less than 263).

Here is the very simple and straightforward way I’m doing it now:

```
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
```

Note: I’m using this function in many Project Euler problems. So no one else will ever have to maintain this code. And this kind of micro-optimization could actually make a difference, since part of the challenge is to do every algorithm in less than a minute, and this function will need to be called millions of times in some problems.

I’ve tried the different solutions to the problem:

- After exhaustive testing, I found that adding
`0.5`

to the result of Math.sqrt() is not necessary, at least not on my machine. - The fast inverse square root was faster, but it gave incorrect results for n >= 410881. However, as suggested by BobbyShaftoe, we can use the FISR hack for n < 410881.
- Newton’s method was a good bit slower than
`Math.sqrt()`

. This is probably because`Math.sqrt()`

uses something similar to Newton’s Method, but implemented in the hardware so it’s much faster than in Java. Also, Newton’s Method still required use of doubles. - A modified Newton’s method, which used a few tricks so that only integer math was involved, required some hacks to avoid overflow (I want this function to work with all positive 64-bit signed integers), and it was still slower than
`Math.sqrt()`

. - Binary chop was even slower. This makes sense because the binary chop will on average require 16 passes to find the square root of a 64-bit number.
- According to John’s tests, using
`or`

statements is faster in C++ than using a`switch`

, but in Java and C# there appears to be no difference between`or`

and`switch`

. - I also tried making a lookup table (as a private static array of 64 boolean values). Then instead of either switch or
`or`

statement, I would just say`if(lookup[(int)(n&0x3F)]) { test } else return false;`

. To my surprise, this was (just slightly) slower. This is because array bounds are checked in Java.